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Given n independent random marked d-vectors (points) Xi distributed with a common density, define the
measure νn = ∑

i ξi , where ξi is a measure (not necessarily a point measure) which stabilizes; this means
that ξi is determined by the (suitably rescaled) set of points near Xi . For bounded test functions f on Rd ,
we give weak and strong laws of large numbers for νn(f ). The general results are applied to demonstrate
that an unknown set A in d-space can be consistently estimated, given data on which of the points Xi lie in
A, by the corresponding union of Voronoi cells, answering a question raised by Khmaladze and Toronjadze.
Further applications are given concerning the Gamma statistic for estimating the variance in nonparametric
regression.
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1. Introduction

Many interesting random variables in stochastic geometry arise as sums of contributions from
each point of a point process Xn comprising n independent random d-vectors Xi,1 ≤ i ≤ n, dis-
tributed with common density function. General limit theorems, including laws of large numbers
(LLNs), central limit theorems and large deviation principles, have been obtained for such vari-
ables, based on a notion of stabilization (local dependence) of the contributions; see [16–18,20].
In particular, Penrose and Yukich [18] derive a general weak LLN of the form

n∑
i=1

n−1ξ(n1/dXi; {n1/dX1, . . . , n
1/dXn}) L1−→β, (1.1)

where ξ(x;X ) is a translation-invariant, real-valued functional defined for all finite X ⊂ R
d and

x ∈ X , with ξ satisfying stabilization and (1 + ε)th moment conditions. The result of [18] also
provides information about the limiting constant β .

Numerous applications of (1.1) are given in [18], for example, to sums of the form∑
e∈G(Xn) φ(n1/d |e|), where φ is a test function satisfying a growth bound, G(Xn) is (for ex-

ample) the nearest neighbour or Delaunay graph on Xn and |e| denotes the length of edge e. For
such sums, Jimenez and Yukich [9] give a strong LLN. Other examples considered in [2,18] and
elsewhere include those concerned with Voronoi graphs, minimal spanning trees, germ–grain
models and on-line packing. In the present paper, we shall give general results extending the
basic limit theorem (1.1) in the following directions.
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1. Almost sure convergence. Under a moments condition and growth bound on the increment
in the left-hand side of (1.1) on addition of a further point (the so-called ‘add one cost’), this
result can be extended to a strong LLN.

2. Convergence of measures. Consider the random measure on R
d comprising a point mass

at each point Xi of Xn, of magnitude given by the ith term in the sum in the left-hand side
of (1.1). This measure keeps track of the spatial locations of the contributions to the sum. Its
asymptotic behaviour has been considered recently in [2,7,14,20]. In fact, it is not necessary to
restrict oneself to a point mass at Xi and one can generalize further by considering the case where
the contribution of the ith term to the random measure is some measure determined by (Xi,Xn)

and localized ‘near’ to Xi in some sense; for example, the 1-dimensional Hausdorff measure on
the graph G(Xn) takes this form. We provide LLNs for the integrals of appropriate test functions
against such measures.

3. Non-translation-invariance. It turns out that the translation-invariance condition on ξ (which
will be defined formally later) can also be relaxed in the limiting result (1.1) if, instead of scaling
the point process X globally, as in (1.1), one scales the point process Xn locally at each point Xi

to keep the average density of points bounded, as n becomes large.
4. Marked point processes. In a number of examples in the literature, the points of the point

process Xn are required to carry independent identically distributed marks in some abstract mea-
sure space (the mark space).

We state our general results in Section 2 and prove them in Section 4, using auxiliary results
on weak convergence given in Section 3. In Section 5 (which can be read without consulting
Sections 3–4), we illustrate our general results with two specific applications in nonparametric
statistics. Many other fields of application have been discussed elsewhere [2,16,18] and we do
not attempt to review all of these, but our results often enable us to generalize results in those
papers as indicated above.

The first application in Section 5 is to a question raised by Khmaladze and Toronjadze [11],
motivated by statistical image analysis. Suppose A is an unknown subset of the unit cube in
R

d and that the random vectors Xi represent ‘sensors’ which are scattered at random over the
unit cube. Each sensor can detect whether it lies in the set A or not. A reasonable estimate An

of the unknown set A, given the binary data from n sensor locations Xn, is then given by the
union of the Voronoi cells, relative to the random point set Xn, of those points Xi which lie in A.
Essentially, the question raised in [11] is whether or not An is a consistent estimator for A as
n → ∞; we answer this affirmatively via the strong LLN for measures.

Our second application is to a nonparametric regression model. Suppose that with each point
Xi ∈ R

d , we have an associated real-valued measurement Yi , related to Xi by Yi = h(Xi) + ei .
Here, we assume that the function h ∈ C2(Rd ,R) is unknown and that the independent error ei

has mean zero and unknown variance σ 2. For a large observed sample (Xi, Yi)
n
i=1, a possible

estimate for σ 2 is given by Wi := (Yj (i,n,1) − Yi)/2, where j (i, n,1) is chosen so that Xj(i,n,1)

is the nearest neighbour of Xi in Xn. This estimator is approximately unbiased for n large since
then Wi ≈ (ej (i,n,1) − ei)

2/2.
The mean W of W1, . . . ,Wn is the so-called Gamma statistic [5] based on nearest neighbours;

one can consider a similar statistic based on kth nearest neighbours. We shall use our general re-
sults (requiring non-translation-invariance and marked points) to derive large-sample asymptotic
properties associated with Gamma statistics.
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2. Notation and general results

Let (M,FM,µM) be a probability space (the mark space). Let ξ(x;X ,A) be a Borel mea-
surable R-valued function defined for all triples (x,X ,A), where X ⊂ R

d × M is finite and
where x = (x, t) ∈ X (so x ∈ R

d and t ∈ M) and A is a Borel set in R
d . We assume that

ξ(x;X ) := ξ(x;X , ·) is a σ -finite measure on R
d .

Suppose x = (x, t) ∈ R
d × M and X ⊂ R

d × M is finite. If x /∈ X , we abbreviate and write
ξ(x;X ) instead of ξ(x;X ∪ {x}). We also write X x for X ∪ {x}. Given y ∈ R

d and a ∈ R, we set
y + ax := (y + ax, t). Let y + aX := {(y + aw) : w ∈ X }; in other words, scalar multiplication
and translation act only on the first component of elements of R

d × M. For A ⊆ R
d , we set

y + aA = {Y + aw :w ∈ A}. We say ξ is translation invariant if

ξ(x;X ,A) = ξ(y + x;y +X , y + A)

for all y ∈ R
d , all finite X ⊂ R

d ×M and x ∈X and all Borel A ⊆ R
d .

Let κ be a probability density function on R
d . Abusing notation slightly, we also let κ denote

the corresponding probability measure on R
d , that is, we write κ(A) for

∫
A

κ(x)dx, for Borel
A ⊆ R

d . For all λ > 0, let λκ denote the measure on R
d with density λκ(·) and let Pλ denote a

Poisson point process in R
d ×M with intensity measure λκ × µM.

Let (X,T ), (X′, T ′), (X1, T1), (X2, T2), . . . denote a sequence of independent identically dis-
tributed random elements of R

d × M with distribution κ × µM and set X := (X,T ), X′ :=
(X′, T ′) and Xi := (Xi, Ti), i ≥ 1. For n ∈ N, let Xn be the point process in R

d × M given
by Xn := {X1,X2, . . . ,Xn}. Let Hλ denote a Poisson point process in R

d × M with intensity
λ times the product of d-dimensional Lebesgue measure and µM (i.e., a homogeneous marked
Poisson process in R

d with intensity λ) and let H̃λ denote an independent copy of Hλ.
Suppose we are given a family of non-empty open subsets 	λ of R

d , indexed by λ ≥ 1, that
are non-decreasing in λ, that is, satisfying 	λ ⊆ 	λ′ for λ < λ′. Denote by 	∞ the limiting set,
that is, set 	∞ := ⋃

λ≥1 	λ. Suppose we are given a further Borel set 	 with 	∞ ⊆ 	 ⊆ R
d . In

many examples, one takes 	λ = 	 for all λ, either with 	 = R
d or with κ supported by 	.

For λ > 0 and for finite X ⊂ R
d ×M with x = (x, t) ∈ X and Borel A ⊂ R

d , let

ξλ(x;X ,A) := ξ
(
x;x + λ1/d(−x +X ), x + λ1/d(−x + A)

)
1	λ(x). (2.1)

When ξ is translation invariant, the rescaled measure ξλ simplifies to

ξλ(x;X ,A) = ξ(λ1/dx;λ1/dX , λ1/dA)1	λ×M(x). (2.2)

In general, the point process x + λ1/d(−x + X ) is obtained by a dilation, centred at x, of the
original point process. Loosely speaking, this dilation has the effect of reducing the density of
points by a factor of λ. Thus, for x = (x, t) ∈ R

d × M, the rescaled measure ξλ(x;X ,A) is the
original measure ξ at x relative to the image of the point process X under a dilation about x,
acting on the image of ‘space’ (i.e., the set A) under the same dilation. This ‘dilation of space’
has the effect of concentrating the measure near to x; for example, if ξ(x;X ) is a unit point
mass at x + y(x) for some measurable choice of function x �→ y(x) ∈ R

d and 	λ = R
d , then

ξλ(x, t;X ) would be a unit point mass at x + λ−1/dy(x).
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Our principal objects of interest are the random measures νλ,n on R
d , defined for λ > 0 and

n ∈ N by νλ,n := ∑n
i=1 ξλ(Xi;Xn). We study these measures via their action on test functions in

the space B(	) of bounded Borel measurable functions on 	. We let B̃(	) denote the subclass
of B(	) consisting of those functions that are Lebesgue-almost everywhere continuous. When
	 �= R

d , we extend functions f ∈ B(	) to R
d by setting f (x) = 0 for x ∈ R

d \ 	. Given f ∈
B(	), set 〈f, ξλ(x;X )〉 := ∫

Rd f (z)ξλ(x;X ,dz). Also, set

〈f, νλ,n〉 :=
∫

	

f dνλ,n =
n∑

i=1

〈f, ξλ(Xi;Xn)〉. (2.3)

The indicator function 1	λ(x) in the definition (2.1) of ξλ means that only points Xi ∈ 	λ ×M
contribute to νλ,n. In most examples, the sets 	λ are all the same and often are all R

d . However,
there are cases where moment conditions such as (2.5) below hold for a sequence of sets 	λ, but
would not hold if we were to take 	λ = 	 for all λ; see, for example, [15]. Likewise, in some
examples, the measure ξ(x;X ) is not finite on the whole of R

d , but is well behaved on 	, hence
the restriction of attention to test functions in B(	).

Let | · | denote the Euclidean norm on R
d and for x ∈ R

d and r > 0, define the ball Br(x) :=
{y ∈ R

d : |y − x| ≤ r}. We denote by 0 the origin of R
d and abbreviate Br(0) to Br . We write

B∗
r (x) for Br(x) ×M, B∗

r for Br ×M and (B∗
r )c for (Rd \ Br) ×M. Finally, we let ωd denote

the Lebesgue measure of the d-dimensional unit ball B1.
We say a set X ⊂ R

d ×M is locally finite if X ∩ B∗
r is finite for all finite r . For x ∈ R

d ×M
and Borel A ⊆ R

d , we extend the definition of ξ(x;X ,A) to locally finite infinite point sets X
by setting

ξ(x;X ,A) := lim sup
K→∞

ξ(x;X ∩ B∗
K,A).

Also, for x = (x, t) ∈ R
d ×M, we define the x-shifted version ξx∞(·, ·) of ξ(x; ·, ·) by

ξx∞(X ,A) = ξ(x;x +X , x + A).

Note that if ξ is translation invariant, then ξ
(x,t)∞ (X ,A) = ξ

(0,t)∞ (X ,A) for all x ∈ R
d , t ∈ M and

Borel A ⊆ R
d .

The following notion of stabilization is similar to those used in [2,18].

Definition 2.1. For any locally finite X ⊂ R
d ×M and any x = (x, t) ∈ R

d ×M, define R(x;X )

(the radius of stabilization of ξ at x with respect to X ) to be the smallest integer-valued r such
that r ≥ 0 and

ξ(x;x + [X ∩ B∗
r ] ∪Y,B) = ξ(x;x + [X ∩ B∗

r ],B)

for all finite Y ⊆ (B∗
r )c and Borel B ⊆ R

d . If no such r exists, we set R(x;X ) = ∞.

In the case where ξ is translation invariant, R((x, t);X ) = R((0, t);X ), so R((x, t);X ) does
not depend on x. Of particular importance to us will be radii of stabilization with respect to the
homogeneous Poisson processes Hλ.
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We assert that R(x;X ) is a measurable function of X and hence, when X is a random point
set such as Hλ, R(x;X ) is an N ∪ {∞}-valued random variable. To see this assertion, observe
that by Dynkin’s pi-lambda lemma, for any k ∈ N, the event {R(x;X ) ≤ k} equals the event⋂

B∈B{s(X ,B) = i(X ,B)}, where B is the �-system consisting of the rectilinear hypercubes in

R
d whose corners have rational coordinates and for B ∈ B, we set

s(X ,B) := sup
{
ξ
(
x;x + ([X ∩ B∗

k ] ∪Y),B
)

:Y ⊆ (B∗
k )c

}
,

i(X ,B) := inf
{
ξ
(
x;x + ([X ∩ B∗

k ] ∪Y),B
)

:Y ⊆ (B∗
k )c

}
.

Also, s(X ,B) is a measurable function of X because we assume ξ is Borel measurable and, for
any b, we have

{X : s(X ) > b} = π1
({

(X ,Y) : ξ(x;x + [X ∩ B∗
k ] ∪ [Y \ B∗

k ],B) > b
})

,

where π1 denotes projection onto the first component, acting on pairs (X ,Y), with X and Y
finite sets in R

d ×M. Similarly, i(X ,B) is a measurable function of X .
For x = (x, t) ∈ R

d × M, let ξ∗
λ (x;X , ·) be the point measure at x with total measure

ξλ(x;X ,	), that is, for Borel A ⊆ R
d , let

ξ∗
λ (x;X ,A) := ξλ(x;X ,	)1A(x). (2.4)

We consider measures ξ and test functions f ∈ B(	) satisfying one of the following assump-
tions.

A1: ξ((x, t);X , ·) is a point mass at x for all (x, t,X ).
A2: ξ(x;X , ·) is absolutely continuous with respect to Lebesgue measure on R

d , with Radon–
Nikodym derivative denoted ξ ′(x;X , y) for y ∈ R

d , satisfying ξ ′(x;X , y) ≤ K0 for all
(x;X , y), where K0 is a finite positive constant.

A3: f is almost everywhere continuous, that is, f ∈ B̃(	).

Note that assumption A1 implies that ξ∗
λ = ξλ, and that assumption A2 will hold if ξ(x,X , ·) is

Lebesgue measure on some random subset of R
d determined by x,X .

Our first general result is a weak law of large numbers for 〈f, νλ,n〉 defined at (2.3), for f ∈
B(	). This extends [18], which is concerned only with the case where f is a constant. We require
almost surely finite radii of stabilization with respect to homogeneous Poisson processes, along
with a moments condition.

Theorem 2.1. Suppose that R((x,T );Hκ(x)) is almost surely finite for κ-almost all x ∈ 	∞.
Suppose, also, that f ∈ B(	) and that one or more of assumptions A1, A2, A3 holds. Let q = 1
or q = 2 and let the sequence (λ(n), n ≥ 1) be a sequence of positive numbers with λ(n)/n → 1
as n → ∞. If there exists p > q such that

lim sup
n→∞

E
[
ξλ(n)(X;Xn−1,	)p

]
< ∞, (2.5)
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then, as n → ∞, we have the Lq convergence

n−1〈f, νλ(n),n

〉 → ∫
	∞

f (x)E
[
ξ (x,T )∞

(
Hκ(x),R

d
)]

κ(x)dx as n → ∞, (2.6)

with finite limit, and the L1 convergence

n−1
n∑

i=1

∣∣〈f, ξλ(n)(Xi;Xn) − ξ∗
λ(n)(Xi;Xn)

〉∣∣ → 0 as n → ∞. (2.7)

To extend Theorem 2.1 to a strong law, we need to assume extra conditions concerning the so-
called add one cost, that is, the effect of adding a single further point on the measure νλ(n),n−1.
We define three different types of add one cost, the first two of which refer to a test function f .
Given f ∈ B(	) and n ≥ 2, λ ≥ 1, set λ,n(f ) := 〈f, νλ,n − νλ,n−1〉. Also, let Gλ,n(f ) be the
sum in (2.7), that is, set

Gλ,n(f ) :=
n∑

i=1

|〈f, ξλ(Xi;Xn) − ξ∗
λ (Xi;Xn)〉|

and set ′
λ,n(f ) := Gλ,n(f ) − Gλ,n−1(f ). Furthermore, for 1 ≤ i ≤ n − 1, let |ξλ(Xi;Xn) −

ξλ(Xi;Xn−1)|(	) denote the total variation (i.e., the sum of positive and negative parts) of the
signed measure ξλ(Xi;Xn, ·) − ξλ(Xi;Xn−1, ·) on 	 and define ̃λ,n by

̃λ,n := ξλ(Xn;Xn,	) +
n−1∑
i=1

|ξλ(Xi;Xn) − ξλ(Xi;Xn−1)|(	). (2.8)

Given a random variable W , as usual, we let ‖W‖p := E[|W |p]1/p for p = 1 and ‖W‖∞ :=
inf{t > 0 :P [|W | > t] = 0} with inf(∅) := +∞.

Theorem 2.2. Suppose that R((x,T );Hκ(x)) is almost surely finite for κ-almost all x ∈ 	∞.
Suppose, also, that f ∈ B(	) and that one or more of assumptions A1, A2, A3 holds. Suppose
λ(n)/n → 1 as n → ∞ and that there exists p > 1 such that (2.5) holds. Suppose β ≥ 1 and
p′ > 2(β + 1). If, as n → ∞, we have∥∥λ(n),n(f )

∥∥∞ = O(nβ),
∥∥λ(n),n(f )

∥∥
p′ = O(1), (2.9)

then (2.6) holds with almost sure convergence. If, instead of (2.9), we have∥∥′
λ(n),n(f )

∥∥∞ = O(nβ),
∥∥′

λ(n),n(f )
∥∥

p′ = O(1), (2.10)

then (2.7) holds with almost sure convergence. Finally, if∥∥̃λ(n),n

∥∥∞ = O(nβ),
∥∥̃λ(n),n

∥∥
p′ = O(1), (2.11)

then both (2.9) and (2.10) hold, so both (2.6) and (2.7) hold with almost sure convergence.
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Remarks. Certain weak laws of large numbers for 〈f, ν
ξ

λ(n),n〉 follow directly from Theorem 2.4
of Baryshnikov and Yukich [2]. However, the conditions in Theorem 2.1 are weaker in many
ways than those in [2], as one might expect, since we consider only the law of large numbers,
whereas [2] is concerned with Gaussian limits.

For example, in [2], attention is restricted to cases where assumption A1 holds. It is often
natural to drop this restriction. Also, in [2], it is assumed that κ has compact convex support
and is continuous on its support, whereas we make no assumptions here on κ . Moreover, in [2],
attention is restricted to continuous bounded test functions f , whereas we consider test functions
which are merely bounded (under A1 or A2) or bounded and almost everywhere continuous
(under A3). Thus, we can consider test functions which are indicator functions of Borel sets
A in 	.

Our stabilization conditions refer only to homogeneous Poisson processes, and not to any
non-homogeneous Poisson processes, as in [2]; unlike that paper, we require only that radii of
stabilization be almost surely finite, with no condition on their tails. Also, our moments condition
(2.5) is simpler than the corresponding condition in [2] (equation (2.2) of [2]).

Almost sure convergence, that is, the strong law of large numbers, is not addressed in [2] or
[18]. Some strong laws for graphs arising in geometric probability are derived by Jimenez and
Yukich [9] and we add to these. As in [9], we actually prove complete convergence, as defined
in, for example, [13] or [17].

Unlike [2,9,18], we spell out the statement and proof of our law of large numbers for marked
point processes (i.e., point processes in R

d ×M, rather than in R
d ). This setting includes many

interesting examples, such as germ–grain models and on-line packing, and generalizes the un-
marked point process setting because we can always take M to have a single element and then
identify R

d ×M with R
d to recover results for unmarked point processes from the general results

for marked point processes.
Poisson samples. It is also of interest to obtain a similar result to Theorem 2.1 for the random

measure µλ defined in a similar manner to νλ,n, but using the Poisson point process Pλ instead of
Xn, taking λ → ∞. Such a result can indeed be obtained by a similar proof, with L1 convergence
if, instead of the moments condition (2.5), one assumes

sup
λ≥1

E[ξλ(X;Pλ,	)p] < ∞, for some p > 1.

Multisample statistics. Suppose that Xn1 ⊂ R
d represents a sample of n1 points of ‘type one’

and Yn2 ⊂ R
d represents an independent sample of n2 points of ‘type two,’ possibly having a

different underlying density function. Suppose that for i = 1,2, the functionals ξ (1)(x;X ,Y)

and ξ (2)(y;X ,Y) are defined in a translation-invariant and stabilizing manner for finite X ⊂ R
d ,

finite Y ⊂ R
d , x ∈ X and y ∈ Y . When the integers ni = ni(n) (i = 1,2) satisfy n1(n)+n2(n) =

n and ni(n)/n → πi ∈ (0,1) as n → ∞, the sum

n1∑
i=1

ξ (1)(n1/dXi;n1/d

1 Xn1, n
1/dYn2) +

n2∑
j=1

ξ (2)(n1/dYj ;n1/dXn1, n
1/dYn2)
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satisfies an LLN under weaker (or at least, different) conditions than those for the main result
of Henze and Voigt ([8], Theorem 2.3) for such sums (and likewise for more than two samples).
The proof is based on the techniques of this paper and the results are comparable to those for
independently marked points where M = {1,2} and the ‘mark’ determines whether a point is in
sample X or Y . We omit the details here.

3. Weak convergence and the objective method

In this section, we derive certain weak convergence results (Lemmas 3.3–3.6). We use a version

of the ‘objective method’ [1,21], whereby convergence in distribution (denoted
D−→) for a func-

tional defined on a sequence of finite probabilistic objects (in this case, rescaled marked point
processes) is established by showing that these probabilistic objects themselves converge in dis-
tribution to an infinite probabilistic object (in this case, a homogeneous marked Poisson process)
and that the functional of interest is continuous.

A point process in R
d × M is an L-valued random variable, where L denotes the space of

locally finite subsets of R
d ×M. We use the following metric on L:

D(A,A′) = (
max{K ∈ N :A∩ B∗

K = A′ ∩ B∗
K })−1

. (3.1)

With this metric, L is a metric space which is complete but not separable. In the unmarked
case where M has a single element, our choice of metric is not the same as the metric used
in Section 5.3 of [21]. Indeed, for one-point unmarked sets, our metric generates the discrete
topology rather than the Euclidean topology.

Recall (see, e.g., [13], [19]) that x ∈ R
d is a Lebesgue point of κ if ε−d

∫
Bε(x)

|κ(y)− κ(x)|dy

tends to zero as ε ↓ 0 and that the Lebesgue Density Theorem tells us that almost every x ∈ R
d

is a Lebesgue point of κ . For subsequent results, it is useful to define the region

	0 := {x ∈ 	∞ :κ(x) > 0, x a Lebesgue point of κ(·)}. (3.2)

Lemma 3.1. Suppose x ∈ 	0 and suppose (y(λ),λ > 0) is an R
d -valued function with |y(λ) −

x| = O(λ−1/d) as λ → ∞. Then there exist coupled realizations P ′
λ and H′

κ(x) of Pλ and Hκ(x),
respectively, such that

D
(
λ1/d

(−y(λ) +P ′
λ

)
,H′

κ(x)

) P−→0 as λ → ∞. (3.3)

Proof. Let H+ denote a homogeneous Poisson process of unit intensity in R
d ×M×[0,∞). Let

P ′
λ denote the image of the restriction of H+ to the set {(w, t, s) ∈ R

d ×M×[0,∞) : s ≤ λκ(w)}
under the mapping (w, t, s) �→ (w, t). Let H′

κ(x), denote the image of the restriction of H+ to

the set {(w, t, s) ∈ R
d ×M× [0,∞) : s ≤ λκ(x)} under the mapping

(w, t, s) �→ (
λ1/d

(
w − y(λ)

)
, s

)
.

By the Mapping Theorem [12], P ′
λ has the same distribution as Pλ, while H′

κ(x) has the same
distribution as Hκ(x).



1132 M.D. Penrose

The number of points of the point set

(
λ1/d

(−y(λ) +P ′
λ

)�H′
κ(x)

) ∩ B∗
K

equals the number of points (X,T ,S) of H+ with X ∈ Bλ−1/dK(y(λ)) and with either λκ(x) <

S ≤ λκ(X) or λκ(X) < S ≤ λκ(x). This is Poisson distributed with mean

λ

∫
B

λ−1/dK
(y(λ))

|κ(z) − κ(x)|dz,

which tends to zero because x is assumed to be a Lebesgue point of κ , and (3.3) follows. �

In the rest of this section, given x ∈ R
d , we write x for (x, T ) (i.e., for the point x equipped

with a generic random mark T ) and, given y ∈ R
d , we write y for (y, T ′).

Lemma 3.2. Suppose (x, y) ∈ 	0 × 	0 with x �= y. Let (λ(k), �(k),m(k))k∈N be a ((0,∞) ×
N × N)-valued sequence satisfying λ(k) → ∞, and �(k)/λ(k) → 1 and m(k)/λ(k) → 1 as k →
∞. Then, as k → ∞,

(
λ(k)1/d

(−x +X�(k)

)
, λ(k)1/d

(−x +Xm(k)

)
, λ(k)1/d

(−y +Xm(k)

)
,

λ(k)1/d
(−x +X y

�(k)

)
, λ(k)1/d

(−x +X y
m(k)

)
, λ(k)1/d

(−y +X x
m(k)

))
D−→(

Hκ(x),Hκ(x), H̃κ(y),Hκ(x),Hκ(x), H̃κ(y)

)
. (3.4)

Proof. In this proof, we write simply λ for λ(k), � for �(k) and m for m(k). We use the following
coupling. Suppose we are given λ. On a suitable probability space, let P and P̃ be independent
copies of Pλ, independent of X1,X2, . . . .

Let P ′ be the point process in R
d ×M consisting of those points (V ,T ) ∈ P such that |V −

x| < |V − y|, together with those points (V ′,U ′) ∈ P̃ with |V ′ − y| < |V ′ − x|. Clearly P ′ is a
Poisson process of intensity λκ × µM on R

d ×M.
Let H′

κ(x) and H̃′
κ(y) be independent copies of Hκ(x) and Hκ(y), respectively. Assume H′

κ(x)

and H̃′
κ(y) are independent of (X1,X2,X3, . . .). Using Lemma 3.1, assume, also, that H′

κ(x) is

coupled to P and H̃′
κ(y) is coupled to P̃ in such a way that as k → ∞,

max
(
D

(
H′

κ(x), λ
1/d(−x +P)

)
,D

(
H′

κ(y), λ
1/d(−y + P̃)

)) P−→0. (3.5)

Let N denote the number of points of P ′ (a Poisson variable with mean λ). Choose an ordering
on the points of P ′, uniformly at random from all N ! possible such orderings. Use this ordering
to list the points of P ′ as W1,W2, . . . ,WN . Also, set WN+1 = X1,WN+2 = X2,WN+3 = X3

and so on. Set

X ′
� := {W1, . . . ,W�}, X ′

m := {W1, . . . ,Wm}.
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Then (X ′
�,X ′

m)
D= (X�,Xm) and (H′

κ(x), H̃′
κ(y))

D= (Hκ(x), H̃κ(y)), where
D= denotes equality of

distribution.
Let K ∈ N and let δ > 0. Define the events

E := {X ′
m ∩ B∗

λ−1/dK
(x) = P ′ ∩ B∗

λ−1/dK
(x)},

F := {(
λ1/d(−x +P)

) ∩ B∗
K = H′

κ(x) ∩ B∗
K

}
.

Event E occurs unless either one or more of the (N − m)+ “discarded” points of P ′ or one
or more of the (m − N)+ “added” points of {X1,X2, . . .} lies in B∗

λ−1/dK
(x). For each added

or discarded point, for sufficiently large λ, the probability of lying in B∗
λ−1/dK

(x) is at most

ωd(κ(x)+1)Kd/λ because x is a Lebesgue point. Thus, for k sufficiently large that |m−λ| ≤ δλ,
we have

P [Ec] ≤ P [|N − λ| > δλ] + (2δλ)ωd

(
κ(x) + 1

)
Kd/λ,

which is less than 3δωd(κ(x) + 1)Kd for sufficiently large k. Hence, P [Ec] → 0 as k → ∞.
Moreover, by (3.5), we also have P [Fc] → 0 as k → ∞.

Assuming λ to be so large that |x − y| > 2λ−1/dK, if E ∩ F occurs, then

H′
κ(x) ∩ B∗

K = (
λ1/d(−x +P)

) ∩ B∗
K

= λ1/d
(
(−x +P) ∩ B∗

λ−1/dK

) = λ1/d
(−x + (

P ∩ B∗
λ−1/dK

(x)
))

= λ1/d
(−x + (

X ′
m ∩ B∗

λ−1/dK
(x)

))
= λ1/d

(
(−x +X ′

m) ∩ B∗
λ−1/dK

) = (
λ1/d(−x +X ′

m)
) ∩ B∗

K

so that D(H′
κ(x), λ

1/d(−x +X ′
m)) ≤ 1/K . Hence, for any K , we have

P
[
D

(
H′

κ(x), λ
1/d(−x +X ′

m)
)
> 1/K

] → 0.

Similarly, we have

max
{
P

[
D

(
H′

κ(x), λ
1/d(−x +X ′

�)
)
> 1/K

]
,P

[
D

(
H̃′

κ(y), λ
1/d(−y +X ′

m)
)
> 1/K

]
,

P
[
D

(
H′

κ(x), λ
1/d

(−x + (X ′
�)

y)) > 1/K
]
,P

[
D

(
H′

κ(x), λ
1/d

(−x + (X ′
m)y)) > 1/K

]
,

P
[
D

(
H̃′

κ(y), λ
1/d

(−y + (X ′
m)x)) > 1/K

]} → 0.

Combining these, we have the required convergence in distribution. �

Lemma 3.3. Suppose (x, y) ∈ 	0 × 	0, with x �= y. Suppose, also, that R(x;Hκ(x)) and
R(y;Hκ(y)) are almost surely finite. Suppose (λ(m))m≥1 is a (0,∞)-valued sequence with
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λ(m)/m → 1 as m → ∞. Then, for Borel A ⊆ R
d , as m → ∞, we have

ξλ(m)

(
x;Xm,x + λ(m)−1/dA

) D−→ ξx∞
(
Hκ(x),A

)
(3.6)

and (
ξλ(m)

(
x;X y

m,x + λ(m)−1/dA
)
, ξλ(m)

(
y;X x

m,y + λ(m)−1/dA
))

D−→(
ξx∞

(
Hκ(x),A

)
, ξ

y∞
(
H̃κ(y),A

))
. (3.7)

Proof. Given A, define the mapping hA,x :M× L → [0,∞] and the mapping h2
A : (M × L×

M×L) → [0,∞]2 by

hA,x(t,X ) = ξ
(
(x, t);x +X , x + A

)
,

h2
A(t,X , t ′,X ′) = (

hA,x(t,X ), hA,y(t
′,X ′)

)
.

Since R(x;Hκ(x)) < ∞ a.s., the pair (T ,Hκ(x)) lies a.s. at a continuity point of hA,x , where the
topology on M × L is the product of the discrete topology on M and the topology induced by
our metric D on L, defined at (3.1). Similarly, (T ,Hκ(x), T

′, H̃κ(y)) lies a.s. at a continuity point
of h2

A. We have, by the definition of ξλ, that

ξλ(x;Xm,x + λ−1/dA)

= hA,x

(
T ,λ1/d(−x +Xm)

)
,(

ξλ(x;X y
m,x + λ−1/dA), ξλ(y;X x

m,y + λ−1/dA)
)

= h2
A

(
T ,λ1/d(−x +X y

m),T ′, λ1/d(−y +X x
m)

)
.

By Lemma 3.2, we have (T ,λ(m)1/d(−x + Xm))
D−→(T ,Hκ(x)) so that (3.6) follows by the

Continuous Mapping Theorem ([3], Chapter 1, Theorem 5.1). Also, by Lemma 3.2,

(
T ,λ(m)1/d(−x +X y

m),T ′, λ(m)1/d(−y +X x
m)

) D−→(
T ,Hκ(x), T

′, H̃κ(y)

)
so that (3.7) also follows by the Continuous Mapping Theorem. �

Lemma 3.4. Suppose (x, y) ∈ 	0 × 	0, with x �= y, that R(x;Hκ(x)), R(y;Hκ(y)), ξx∞(Hκ(x),

R
d) and ξ

y∞(Hκ(y),R
d) are almost surely finite and that (λ(m))m≥1 is a (0,∞)-valued sequence

with λ(m)/m → 1 as m → ∞. Then, as m → ∞, we have

ξλ(m)(x;Xm,	)
D−→ ξx∞

(
Hκ(x),R

d
)

(3.8)

and (
ξλ(m)(x;X y

m,	), ξλ(m)(y;X x
m,	)

) D−→(
ξx∞

(
Hκ(x),R

d
)
, ξ

y∞
(
H̃κ(y),R

d
))

. (3.9)
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Proof. Since 	0 ⊆ 	∞ ⊆ 	 and 	∞ is open, for any K > 0, we have, for sufficiently large m,
that

0 ≤ ξλ(m)(x;Xm,R
d \ 	)

≤ ξλ(m)

(
x;Xm,R

d \ Bλ(m)−1/dK(x)
) D−→ ξx∞

(
Hκ(x),R

d \ BK

)
, (3.10)

where the convergence follows from (3.6). By assumption, ξ
x,T∞ (Hκ(x),R

d) is almost surely
finite, so the limit in (3.10) itself tends to zero in probability as K → ∞ and therefore

ξλ(m)(x;Xm,R
d \ 	)

P−→0 as λ → ∞. Combining this with the case A = R
d of (3.6) and using

Slutsky’s theorem (see, e.g., [13]), we obtain (3.8).
A similar argument to the above, using (3.7), shows that as m → ∞,

(
ξλ(m)(x;X y

m,R
d \ 	), ξλ(m)(y;X x

m,R
d \ 	)

) P−→(0,0)

and by using this with the case A = R
d of (3.7) and Slutsky’s theorem in two dimensions, we

obtain (3.9). �

The next lemma compares the measure ξλ(x;X , ·) to the corresponding point measure
ξ∗
λ (x;X , ·). In proving this, for f ∈ B(	), we write ‖f ‖∞ for sup{|f (x)| : x ∈ 	}.

Lemma 3.5. Let x ∈ 	0 and suppose that R(x;Hκ(x)) and ξx∞(Hκ(x),R
d) are almost surely

finite. Let y ∈ R
d , with y �= x. Suppose that f ∈ B(	) and suppose either that f is continuous

at x or that assumption A2 holds and x is a Lebesgue point of f . Suppose (λ(m))m≥1 is a
(0,∞)-valued sequence with λ(m)/m → 1 as m → ∞. Then, as m → ∞,

〈
f, ξλ(m)(x;Xm) − ξ∗

λ(m)(x;Xm)
〉 P−→0 (3.11)

and 〈
f, ξλ(m)(x;X y

m) − ξ∗
λ(m)(x;X y

m)
〉 P−→0. (3.12)

Proof. In this proof, we write λ for λ(m). The left-hand side of (3.11) is equal to∫
Rd

(
f (z) − f (x)

)
ξλ(x;Xm,dz). (3.13)

Given K > 0, we split the region of integration in (3.13) into the complementary regions
Bλ−1/dK(x) and R

d \ Bλ−1/dK(x). Consider the latter region first. By (3.6), we have∣∣∣∣
∫

Rd\B
λ−1/dK

(x)

(
f (z) − f (x)

)
ξλ(x;Xm,dz)

∣∣∣∣ ≤ 2‖f ‖∞ξλ

(
x;Xm,R

d \ Bλ−1/dK(x)
)

D−→2‖f ‖∞ξx∞
(
Hκ(x),R

d \ BK

)
,
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where the limit is almost surely finite and converges in probability to zero as K → ∞. Hence for
ε > 0, we have

lim
K→∞ lim sup

m→∞
P

[∣∣∣∣
∫

Rd\B
λ−1/dK

(x)

(
f (z) − f (x)

)
ξλ(x;Xm,dz)

∣∣∣∣ > ε

]
= 0. (3.14)

Turning to the integral over Bλ−1/dK(x), we consider separately the case where f is continuous
at x and the case where A2 holds and x is a Lebesgue point of f . To deal with the first of these
cases, writing φε(x) for sup{|f (y) − f (x)| :y ∈ Bε(x)}, we observe that∣∣∣∣

∫
B

λ−1/dK
(x)

(
f (z) − f (x)

)
ξλ(x;Xm,dz)

∣∣∣∣ ≤ φλ−1/dK(x)ξλ(x;Xm,	). (3.15)

If f is continuous at x, then φλ−1/dK(x) → 0, while ξλ(x;Xm,	) converges in distribution to the
finite random variable ξx∞(Hκ(x),R

d), by (3.8), and hence the right-hand side of (3.15) tends to
zero in probability as m → ∞. Combined with (3.14), this gives us (3.11) in the case where f is
continuous at x.

Under assumption A2, for Borel A ⊆ R
d , the change of variables z = x +λ−1/d(y − x) yields

ξλ(x;X ,A) =
∫

x+λ1/d (−x+A)

ξ ′(x;x + λ1/d(−x +X ), y
)

dy

= λ

∫
A

ξ ′(x;x + λ1/d(−x +X ), x + λ1/d(z − x)
)

dz.

Hence, under A2,∣∣∣∣
∫

B
λ−1/dK

(x)

(
f (z) − f (x)

)
ξλ(x;Xm,dz)

∣∣∣∣
= λ

∣∣∣∣
∫

B
λ−1/dK

(x)

(
f (z) − f (x)

)
ξ ′(x;x + λ1/d(−x +Xm), x + λ1/d(z − x)

)
dz

∣∣∣∣
≤ K0λ

∫
B

λ−1/dK
(x)

|f (z) − f (x)|dz

and if, additionally, x is a Lebesgue point of f , then this tends to zero. Combined with (3.14),
this gives us (3.11) in the case where A2 holds and x is a Lebesgue point of f .

The proof of (3.12) is similar; we use (3.7) and (3.9) instead of (3.6) and (3.8). �

By combining Lemmas 3.3 and 3.5, we obtain the following, which is the main ingredient in
our proof of the Law of Large Numbers in Theorem 2.1.

Lemma 3.6. Suppose (x, y) ∈ 	0 × 	0, with x �= y. Suppose, also, that R(x;Hκ(x)), R(y;
Hκ(y)), ξx∞(Hκ(x),R

d) and ξ
y∞(Hκ(y),R

d) are almost surely finite. Let f ∈ B(	) and suppose
either that A1 holds, that A2 holds and x is a Lebesgue point of f , or that f is continuous
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at x. Suppose (λ(m))m≥1 is a (0,∞)-valued sequence with λ(m)/m → 1 as m → ∞. Then, as
m → ∞, 〈

f, ξλ(m)(x;Xm)
〉 D−→f (x)ξx∞

(
Hκ(x),R

d
)

(3.16)

and 〈
f, ξλ(m)(x;X y

m)
〉〈
f, ξλ(m)(y;X x

m)
〉

D−→f (x)f (y)ξx∞
(
Hκ(x),R

d
)
ξ

y∞
(
H̃κ(y),R

d
)
. (3.17)

Proof. Note, first, that by (3.8),

〈
f, ξ∗

λ(m)(x;Xm)
〉 = f (x)ξλ(m)(x;Xm,	)

D−→f (x)ξx∞
(
Hκ(x),R

d
)

(3.18)

and similarly, by (3.9), (〈
f, ξ∗

λ(m)(x;X y
m)

〉
,
〈
f, ξ∗

λ(m)(y;X x
m)

〉)
D−→(

f (x)ξx∞
(
Hκ(x),R

d
)
, f (y)ξ

y∞
(
H̃κ(y),R

d
))

. (3.19)

In the case where A1 holds, we have ξλ = ξ∗
λ , so (3.16) follows immediately from (3.18) and

(3.17) follows immediately from (3.19).
In the other two cases described, we have (3.11), by Lemma 3.5. Combining this with (3.18),

we see, by Slutsky’s theorem, that (3.16) still holds in the other two cases. Similarly, by (3.19),
(3.12) and Slutsky’s theorem, we can obtain (3.17) in the other cases too. �

4. Proof of general laws of large numbers

In this section, we complete the proofs of Theorems 2.1 and 2.2, using the weak convergence
results from the preceding section. Throughout this section, we assume that (λ(n))n≥1 satisfy
λ(n) > 0 and that λ(n)/n → 1 as n → ∞. Also, let Hκ(X) denote a Cox point process in R

d ×M,
whose distribution, given X = x, is that of Hκ(x) (where X = (X,T ) is as in Section 2). We first

show that the conditions of Theorem 2.1 imply that ξ
(x,T )∞ (Hκ(x),R

d) is finite.

Lemma 4.1. Suppose R((x, T );Hκ(x)) < ∞ almost surely, for κ-almost all x ∈ 	∞. If (2.5)

holds for p = 1, then ξ
(x,T )∞ (Hκ(x),R

d) is almost surely finite, for κ-almost all x ∈ 	∞.

Proof. Given K > 0, define the random variables

SK := ξX∞
(
Hκ(X),BK

)
1	∞(X), SK,n := ξλ(n)

(
X;Xn−1,Bλ(n)−1/dK(X)

)
.

By Lemma 3.3, for any bounded continuous test function h on R, as n → ∞, we have almost sure
convergence of E[h(SK,n)|X] to E[h(SK)|X]. By taking expectations and using the dominated
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convergence theorem, we have that E[h(SK,n)] → E[h(SK)]. Hence, SK,n
D−→SK as n → ∞.

Hence, by (2.5) and Fatou’s Lemma, E[SK ] is bounded by a constant independent of K . Taking
K → ∞, we may deduce that ξX∞(Hκ(X),R

d)1	∞(X) has finite mean and so is almost surely
finite. The result follows. �

To prove Theorem 2.1, we shall use the following general expressions for the first two mo-
ments of 〈f, νλ,n〉. By (2.3), we have

n−1
E〈f, νλ,n〉 = E〈f, ξλ(X;Xn−1)〉 (4.1)

and

n−2 Var
〈
f, ν

ξ

λ(n),n

〉 = n−1
E

[〈
f, ξλ(n)(X;Xn−1)

〉2]
+

(
n − 1

n

)
E

[〈
f, ξλ(n)(X;XX′

n−2)
〉〈
f, ξλ(n)(X′;XX

n−2)
〉]

− (
E

[〈
f, ξλ(n)(X;Xn−1)

〉])2
. (4.2)

Recall that by definition (2.1), ξλ((x, t);X ,R
d) = 0 for x ∈ R

d \ 	λ, with (	λ,λ ≥ 1) a given
non-decreasing family of Borel subsets of R

d with limit set 	∞ and 	∞ ⊆ 	 ⊆ R
d . In the

simplest case, 	λ = R
d for all λ.

Proof of Theorem 2.1. Let f ∈ B(	). First, we prove (i) for the case q = 2. Assume that (2.5)
holds for some p > 2. Set J := f (X)ξX∞(Hκ(X),R

d)1	∞(X) and let J ′ be an independent copy
of J . By Lemma 4.1, J is almost surely finite.

For any bounded continuous test function h on R, by (3.16) from Lemma 3.6, as n →
∞, we have E[h(〈f, ξλ(n)(X;Xn−1)〉)|X] → E[J |X], almost surely. Hence, E[h(〈f, ξλ(n)(X;
Xn−1)〉)] → E[h(J )] so that 〈

f, ξλ(n)(X;Xn−1)
〉 D−→J. (4.3)

Similarly, using (3.17), we obtain

〈
f, ξλ(n)(X;XX′

n−2)
〉〈
f, ξλ(n)(X′;XX

n−2)
〉 D−→J ′J. (4.4)

Also, by (2.5) and the Cauchy–Schwarz inequality, the variables in the left-hand side of (4.3)
and in the left-hand side of (4.4) are uniformly integrable, so we have convergence of means
in both cases. Also, (2.5) shows that the first term in the right-hand side of (4.2) tends to zero.
Hence, we find that the expression (4.2) tends to zero. Moreover, by (4.1) and the convergence of
expectations corresponding to (4.3), n−1

E〈f, νλ(n),n〉 tends to E[J ] and this gives us (2.6) with
L2 convergence,

Now, consider the case q = 1. Assume (2.5) holds for some p > 1. First, assume f is non-
negative. We use a truncation argument; for K > 0, let ξK

λ be the truncated version of the measure
ξ∗
λ , defined by

ξK
λ ((x, t);X ,A) := min(ξλ((x, t);X ,	),K)1A(x).



LLNs in stochastic geometry with applications 1139

Let 	∗ be the set of x ∈ 	0 such that R((x,T );Hκ(x)) and ξ∞(Hκ(x),R
d) are almost surely

finite. By Lemma 4.1, κ(	0 \ 	∗) = 0.
Then, for x = (x, T ) with x ∈ 	∗,〈

f, ξK
λ(n)(x;Xn−1)

〉 = f (x)min(ξλ(x;Xn−1,	),K)

D−→f (x)min
(
ξx∞

(
Hκ(x),R

d
)
,K

)
, (4.5)

where the convergence follows from (3.8). Similarly, for distinct x, y in 	∗, setting x = (x, T )

and y = (y, T ′), by (3.9), we have that〈
f, ξK

λ(n)(x;X y
n−2)

〉〈
f, ξK

λ(n)(y;X x
n−2)

〉
D−→f (x)f (y)min

(
ξx∞

(
Hκ(x),R

d
)
,K

)
min

(
ξ

y∞
(
H̃κ(y),R

d
)
,K

)
. (4.6)

Using (4.5) and the same argument as for (4.3), we may deduce that

〈
f, ξK

λ(n)(X;Xn−1)
〉 D−→JK, (4.7)

where we set

JK := f (X)min
(
ξX∞

(
Hκ(X),R

d
)
,K

)
1	(X).

Likewise, using (4.6), we obtain

〈f, ξK
λ (X;XX′

n−2)〉〈f, ξK
λ (X′;XX

n−2)〉 D−→JKJ ′
K, (4.8)

where J ′
K is an independent copy of JK . Also, since ξK

λ (x;X ,	) is bounded by K , the distrib-
utional convergences (4.7) and (4.8) are of bounded variables, so the corresponding convergence
of expectations holds. Set

νK
λ,n :=

n∑
i=1

ξK
λ (Xi;Xn), ν∗

λ,n :=
n∑

i=1

ξ∗
λ (Xi;Xn).

By following the proof of (2.6) with L2 convergence, we obtain

n−1〈f, νK
λ(n),n

〉 L2−→EJK. (4.9)

Also,

0 ≤ E
[
n−1〈f, ν∗

λ(n),n

〉 − n−1〈f, νK
λ(n),n

〉]
= E

[〈
f, ξ∗

λ(n)(X;Xn−1) − ξK
λ(n)(X;Xn−1)

〉]
≤ ‖f ‖∞E

[
ξλ(n)(X;Xn−1,	)1

{
ξλ(n)(X;Xn−1,	) > K

}]
,
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which tends to zero as K → ∞, uniformly in n, because the moments condition (2.5), p > 1,
implies that the random variables ξλ(n)(X;Xn−1,	) are uniformly integrable. Also, by monotone
convergence, as K → ∞, the right-hand side of (4.9) converges to E[J ]. Hence, taking K → ∞
in (4.9) yields

n−1〈f, ν∗
λ(n),n

〉 L1−→E[J ]. (4.10)

This gives us (2.6) with L1 convergence when assumption A1 holds, in the case where f is non-
negative; by taking positive and negative parts of f and using linearity, we can extend this to
general f .

Now, suppose A2 or A3 holds. Then,

E

[
n−1

n∑
i=1

∣∣〈f, ξλ(n)(Xi;Xn) − ξ∗
λ(n)(Xi;Xn)

〉∣∣]

= E
[∣∣〈f, ξλ(n)(X;Xn−1) − ξ∗

λ(n)(X;Xn−1)
〉∣∣]. (4.11)

By (3.11), the variables |〈f, ξλ(n)(X;Xn−1) − ξ∗
λ(n)

(X;Xn−1)〉| tend to zero in probability and,
by (2.5), they are uniformly integrable, so their mean tends to zero, that is, the expression (4.11)
tends to zero and thus we have (2.7). Combining this with (4.10) gives us (2.6) for q = 1 when
assumption A2 or A3 holds, completing the proof. �

Proof of Theorem 2.2. Suppose that R((x,T );Hκ(x)) is almost surely finite for κ-almost all
x ∈ 	∞. Suppose that λ(n)/n → 1 as n → ∞ and that there exists p > 1 such that (2.5) holds.
By the case p = 1 of Theorem 2.1 (or, more directly, by the argument at the start of the proof
of that result), we have convergence of means in (2.6). To derive almost sure convergence under
condition (2.9), we loosely follow the argument from [17], pages 298–299. For λ > 0, define
Hλ :

⋃∞
n=1[(Rd ×M)n] → R by

Hλ(x1, . . . ,xn) :=
n∑

i=1

〈f, ξλ(xi; {x1, . . . ,xn})〉.

Then, 〈f, νλ,n〉 = Hλ(X1, . . . ,Xn). Let Fi denote the σ -field generated by X1, . . . ,Xi and let F0

denote the trivial σ -field. We then have the martingale difference representation 〈f, νλ(n),n〉 −
E〈f, νλ(n),n〉 = ∑n

i=1 di, where di := E[〈f, νλ(n),n〉|Fi] − E[〈f, νλ(n),n〉|Fi−1]. Notice that

di = E
[
Hλ(n)(X1, . . . ,Xn) − Hλ(n)(X1, . . . ,Xi−1,X′,Xi+1, . . . ,Xn)| Fi

]
.

By assumption (2.9), ‖Hλ(n)(X1, . . . ,Xn) − Hλ(n)(X1, . . . ,Xn−1)‖p′ is bounded by a constant
C, independent of n, and so, by Minkowski’s inequality and exchangeability of X1, . . . ,Xn,∥∥Hλ(n)(X1, . . . ,Xn) − Hλ(n)(X1, . . . ,Xi−1,X′,Xi+1, . . . ,Xn)

∥∥
p′

≤ 2
∥∥Hλ(n)(X1, . . . ,Xn) − Hλ(n)(X1, . . . ,Xn−1)

∥∥
p′ ≤ 2C,
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so, by the conditional Jensen inequality, allowing the constant C to change from line to line, we
have

E|di |p′ ≤ EE
[∣∣Hλ(n)(X1, . . . ,Xn) − Hλ(n)(X1, . . . ,Xi−1,X′,Xi+1, . . . ,Xn)

∣∣p′ | Fi

]
≤ C. (4.12)

Choose γ to satisfy γ < 1/2 and p′γ > β + 1. By the condition p′ > 2(β + 1), such γ exists.
We now use the following modification of Azuma’s inequality, introduced by Chalker et

al. ([4], Lemma 1). For any martingale difference sequence di, i ≥ 1, and for all sequences
wi, i ≥ 1, of positive numbers, we have, for all t > 0, that

P

[∣∣∣∣∣
n∑

i=1

di

∣∣∣∣∣ > t

]
≤ 2 exp

( −t2

32
∑n

i=1 w2
i

)

+
(

1 + 2t−1 sup
i

‖di‖∞
) n∑

i=1

P [|di | > wi].

Letting wi := nγ , t := εn, using (4.12) and Markov’s inequality and noting that supi ‖di‖∞ ≤
Cnβ by the first part of (2.9), we obtain, for any ε > 0, that

P

[∣∣∣∣∣
n∑

i=1

di

∣∣∣∣∣ > εn

]
≤ 2 exp

( −n2

Cn1+2γ

)
+ (1 + Cnβ−1)

n

np′γ ,

which is summable in n by the choice of γ (since we assume β ≥ 1). Hence, by the Borel–
Cantelli lemma, we have almost sure convergence for (2.6).

To prove (2.7) with almost sure convergence under assumption (2.10), define H̃λ :
⋃∞

n=1[(Rd ×
M)n] → R by

H̃λ(x1, . . . ,xn) :=
n∑

i=1

∣∣〈f, ξλ(n)(xi; {x1, . . . ,xn}) − ξ∗
λ(n)(xi; {x1, . . . ,xn})

〉∣∣
and then follow the same argument as given above, with Hλ replaced by H̃λ.

Next, we show that (2.11) implies (2.9) and (2.10) for any f ∈ B(	). Since

λ,n(f ) = 〈f, ξλ(Xn;Xn)〉 +
n−1∑
i=1

〈f, ξλ(Xi;Xn) − ξλ(Xi;Xn−1)〉

and since, for any signed measure µ on 	 with total variation |µ|, we have 〈f,µ〉 ≤ ‖f ‖∞ ×|µ|,
it follows by the triangle inequality and definition (2.8) that |λ,n(f )| ≤ ‖f ‖∞̃λ,n and hence
(2.11) implies (2.9).

Finally, we show that (2.11) implies (2.10). By definition,

′
λ,n(f ) = Gλ,n(f ) − Gλ,n−1(f )
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= |〈f, ξλ(Xn;Xn) − ξ∗
λ (Xn;Xn)〉|

+
n−1∑
i=1

(|〈f, ξλ(Xi;Xn) − ξ∗
λ (Xi;Xn)〉|

− |〈f, ξλ(Xi;Xn−1) − ξ∗
λ (Xi;Xn−1)〉|

)
. (4.13)

For any real a1, a2, b1, b2, we have |(|a1 −b1|−|a2 −b2|)| ≤ |a1 −a2|+|b1 −b2|, by the triangle
inequality, and using this, we can deduce from (4.13) that

|′
λ,n(f )| ≤ 2‖f ‖∞ξλ(Xn;Xn,	) + 4‖f ‖∞

n−1∑
i=1

|ξλ(Xi;Xn)|(	).

By definition (2.8), this is at most 4‖f ‖∞̃λ,n(f ), so (2.11) implies (2.10). �

5. Applications of the general theory

5.1. Voronoi estimation of a set

The first example illustrating our general result is concerned with coverage of a set by Voronoi
cells. Let 	 := (0,1)d . For finite X ⊂ R

d and x ∈X , let Ṽ (x;X ) denote the closed Voronoi cell
with nucleus x for the Voronoi tessellation induced by X , that is, the set of y ∈ R

d lying at least
as close to x (in the Euclidean sense) as to any other point of X . Let V (x;X ) be the intersection
of Ṽ (x;X ) with 	. Let κ be a density function on 	, let X1,X2, . . . be independent random
d-vectors taking values in 	 with common probability density κ and let Xn = {X1, . . . ,Xn} (in
this section, boldface vectors represent unmarked points in R

d ).
Let A be an arbitrary Borel subset of 	. Let An be the estimator of the (unknown) set A

based on data from sensors at Xn using Voronoi cells, that is, let An := ⋃
x∈Xn∩A V (x;Xn).

With a view to potential applications in nonparametric statistics and image analysis, Khmaladze
and Toronjadze [11] ask whether An is a consistent estimator for A. More precisely, with | · |
denoting Lebesgue measure and � denoting symmetric difference of sets, they ask whether we
have almost sure convergence

|An| → A as n → ∞, (5.1)

|A�An| → 0 as n → ∞. (5.2)

They answer these questions affirmatively only for the case d = 1 and comment that for gen-
eral d , (5.2) is not hard to prove when A has Lebesgue null boundary. Using our general results,
we can answer these questions affirmatively without any assumptions on the boundary of A.

Theorem 5.1. Suppose inf{κ(x) :x ∈ 	} > 0. (5.1) and (5.2) then hold almost surely.
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Note that (5.2) implies (5.1). We keep these results separate for presentational purposes. Ac-
tually, the question posed in [11] refers to the almost sure limits analogous to (5.1) and (5.2) for
ANn , where Nn is Poisson with parameter n independent of (X1,X2, . . .), but this clearly follows
from our result since Nn → ∞ almost surely.

We work toward proving Theorem 5.1. Assume henceforth in this section that κ is bounded
away from zero on 	 and set 	λ = 	 for all λ. For finite X ⊂ R

d and x ∈ X , let ξ(x;X , ·) be
the restriction of Lebesgue measure to Ṽ (x;X ). Thus, ξ is translation invariant and points do not
carry marks; also, ξ has the homogeneity property of order d , which says that ξ(ax;aX , aA) =
adξ(x;X ,A) for any a > 0. Combining this with the consequence (2.2) of translation invariance,
we have, for all x,X ,A,λ with x ∈ 	, that

ξλ(x;X ,A) = λξ(x;X ,A) = λ|Ṽ (x;X ) ∩ A|. (5.3)

Lemma 5.1. There is a constant C such that, for t ≥ 1,

sup
n≥1

P [ξn(X;Xn−1,	) > t] ≤ C exp(−t/C). (5.4)

Proof. Let Ci ,1 ≤ i ≤ I , be a finite collection of infinite open cones in R
d with angular radius

π/12 and apex at 0, with union R
d . For x ∈ 	 and 1 ≤ i ≤ I , let Ci (x) be the translate of Ci with

apex at x. Let C+
i (x) be the open cone concentric to Ci (x) with apex x and angular radius π/6.

Let Ri,n(x) denote the distance from x to the nearest point in Xn ∩ C+
i (x) ∩ Bdiam(Ci (x)∩	)(x); if

no such point exists, set Ri,n(x) := diam(Ci (x) ∩ 	). In other words, set

Ri,n(x) := min
(
min{|Y − x| : Y ∈Xn ∩ C+

i (x)},diam
(
Ci (x) ∩ 	

))
,

with the convention that min(∅) := +∞. By elementary geometry, if Y ∈ Xn ∩ C+
i (x), then

Ṽ (x;Xn) ∩ C+
i (x) ⊆ B|Y−x|(x). Hence, V (x;Xn) ∩ Ci (x) ⊆ BRi,n

(x). Therefore, recalling that
ωd denotes the volume of the unit ball in R

d , we have, by (5.3), for any x ∈ 	, that

ξλ(x;Xn−1,	) = λ|V (x;Xn−1)| ≤ ωdλ max
1≤i≤I

Ri,n−1(x)d . (5.5)

Let η := (1/2) sin(π/12). Then, P [Ri,n(x) ≥ s] = 0, unless there exists y ∈ Ci (x) ∩ 	 with
|y − x| = s. But, in this case, Bηs(

x+y
2 ) ⊆ C+

i (x) so that Ri,n(x) ≤ s, unless Bηs(
x+y

2 ) contains
no point of Xn. Moreover, since x+y

2 ∈ 	 and κ is bounded away from zero on 	, there is a
constant δ, independent of x, such that κ(Bηs(

x+y
2 )) ≥ δsd . Hence, for 1 ≤ i ≤ I and all u > 0,

P [Ri,n−1(x)d ≥ u] ≤ (1 − δu)n−1 ≤ exp
(−δ(n − 1)u

)
. (5.6)

By (5.5) and (5.6),

P [ξn(X;Xn−1,	) > t] ≤
I∑

i=1

P [Ri,n−1(X)d > t/(ωdn)]

≤ I exp
(−δ(n − 1)t/(ωdn)

)
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and this gives us the result. �

Proof of Theorem 5.1. Let ξ∗
λ (x;X , ·) be the point mass at x of size ξλ(x;X ,	), as defined

at (2.4). Then by (5.3), for Borel A ⊆ R
d , we have

λ−1ν∗
λ,n(A) = λ−1

∑
x∈A∩Xn

ξλ(x;Xn,	) =
∑

x∈A∩Xn

|V (x;Xn)| = |An|.

Let Ci ,1 ≤ i ≤ I , be as in the proof of Lemma 5.1. Then, Hλ ∩Ci �= ∅ almost surely for each i ≤
I ; set Ri(λ) := inf{|x| : x ∈ Hλ ∩Ci} and R(λ) := 2 max1≤i≤I Ri(λ). The Voronoi cell around 0 is
unaffected by changes to Hλ outside BR(λ) and hence, with this choice of ξ , we have R(0;Hλ) <

∞ almost surely for all λ > 0. Also, ξx∞(Hλ,R
d) is the Lebesgue measure of the cell centred at

0 in the Voronoi tessellation of Hλ ∪ {0}. Since y lies in this cell if and only if B|y|(y) contains
no point of Hλ, by Fubini’s theorem, we have

E[ξx∞(Hλ,R
d)] =

∫
Rd

P
[
Hλ ∩ B|y|(y) = ∅

]
dy

=
∫

Rd

exp(−λωd |y|d)dy = 1/λ.

Set λ(n) = n for all n. By Lemma 5.1, the measure ξ satisfies the moments condition (2.5).
Also, ξ satisfies assumption A2. Hence, setting f to be the indicator function 1A, we can apply
Theorem 2.1 to deduce that

n−1ν∗
n,n(A)

L2−→
∫

A

(1/κ(x))κ(x)dx = |A|,

that is, we have (5.1) with L2 convergence.
With f = 1A, using (5.3), we have

λ−1〈f, ξλ(x;X ) − ξ∗
λ (x;X )〉 = λ−1(ξλ(x;X ,A) − f (x)ξλ(x;X ,	)

)
= ξ(x;X ,A) − f (x)ξ(x;X ,	)

= (
1 − f (x)

)
ξ(x;X ,A) − f (x)ξ(x;X ,	 \ A)

and hence∑
x∈X

λ−1|〈f, ξλ(x;X ) − ξ∗
λ (x;X )〉| =

∑
x∈X \A

ξ(x;X ,A) +
∑

x∈X∩A

ξ(x;X ,	 \ A)

=
∑

x∈X \A
|V (x;X ) ∩ A| +

∑
x∈X∩A

|V (x;X ) \ A|

=
∣∣∣∣∣A�

⋃
x∈X∩A

V (x;X )

∣∣∣∣∣ = |A�An|.
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Therefore, by applying the conclusion (2.7) of the general result in this particular case with
λ(n) = n, we obtain (5.2) with L1 convergence.

For the almost sure convergence, we demonstrate the condition (2.11) for the present choice
of ξ . Observe that for 1 ≤ i ≤ n − 1, the signed measure ξ(Xi;Xn−1) − ξ(Xi;Xn) is, in fact,
a non-negative measure, namely the Lebesgue measure on Ṽ (Xi;Xn−1) ∩ Ṽ (Xn;Xn), since this
is the region (if any) removed from the Voronoi cell around Xi due to the addition of an extra
point at Xn. Thus, by (5.3), ξλ(Xi;Xn−1) − ξλ(Xi;Xn) is λ times the same measure. Hence
ξλ(Xi;Xn) − ξλ(Xi;Xn−1) has no positive part and its total variation on 	 is

|ξλ(Xi;Xn) − ξλ(Xi;Xn−1)|(	) = λ|V (Xi;Xn−1) ∩ V (Xn;Xn)|.
Hence, by (2.8) and (5.3),

̃n,n = ξn(Xn;Xn,	) +
n−1∑
j=1

|ξn(Xj ;Xn) − ξn(Xj ;Xn−1)|(	)

= 2n|V (Xn;Xn)|
and the third moments of this are bounded uniformly in n by Lemma 5.1. Thus, (2.11) holds here
with β = 1 and p′ = 3, so both (2.6) and (2.7) hold with almost sure convergence. �

5.2. Nonparametric regression: the Gamma test

Suppose that Xi, i ≥ 1, are independent random d-vectors with common density κ . In a nonpara-
metric regression model, consider real-valued random variables Yi,1 ≤ i ≤ n, related to random
d-vectors Xi,1 ≤ i ≤ n, by the relation

Yi = h(Xi) + ei, 1 ≤ i ≤ n, (5.7)

where h ∈ C2(Rd ,R) and (ei, i ≥ 1) are independent and identically distributed with mean zero
and common variance σ 2, independent of (Xi)i≥1. Both the function h and the variance σ 2 are
unknown and κ may also be unknown. Often, it is of primary interest to estimate h, but here, we
are concerned with estimating σ 2.

Given k ∈ N and n ≥ k, 1 ≤ i ≤ n, let j (i, n, k) be the index of the kth nearest neighbour of Xi

in the sample {X1, . . . ,Xn}, that is, the value of j such that |X� − Xi | ≤ |Xj − Xi | for precisely
k − 1 values of � ∈ {1,2, . . . , n} \ {i}. The so-called Gamma statistic discussed by Evans and
Jones [5] (see also [10]) with parameter k is an estimator γn,k for σ 2 given by

γn,k := 1

2n

n∑
i=1

(
Yj(i,n,k) − Yi

)2
. (5.8)

For large n, we expect |Xj(i,n,k) − Xi | to be small, so we approximate to h(Yj(i,n,k)) − h(Yi) by
the first-order Taylor approximation ∇h(Xi) · (Xj(i,n,k) − Xi). Under the proposed model, this
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approximation gives us

γn,k − σ 2 ≈ 1

2n

n∑
i=1

[(∇h(Xi) · (Xj(i,n,k) − Xi

) + ej (i,n,k) − ei

)2 − 2σ 2]. (5.9)

The mean of the last expression is 1
2E[(∇h(X1) · (Xj(1,n,k) − X1))

2]. Following equation (2.9)
of [5], define

An,k := E[(∇h(X1) · (Xj(1,n,k) − X1))
2]

2E[|Xj(1,n,k) − X1|2] . (5.10)

Evans and Jones [5] set δk,n := n−1 ∑n
i=1 |Xj(i,n,k) − Xi |2 and propose to estimate σ 2 by the

intercept on the y-axis of a regression of y = γn,k against x = δn,k , plotted for 1 ≤ k ≤ k0, with,
for example, k0 = 20. They argue heuristically (see the discussion leading up to Theorem 2.1
of [5]) that for large n, the value of An,k should be approximately independent of k and give
the slope of the regression line. The following result proves the first of these assertions as an
asymptotic statement since the right-hand side of (5.11) below does not depend on k. In proving
this, we shall give the asymptotic behaviour of the expected value of the expression in (5.9).

We assume throughout this section that 	 ⊂ R
d is bounded and open with κ(	) = 1, that |∇h|

is bounded on 	 and that κ(Br(x))/rd is bounded away from zero, uniformly over x ∈ 	,0 <

r ≤ 1. The last condition holds, for example, if 	 is a finite union of convex sets and the density
function κ is bounded away from zero on 	.

Theorem 5.2. As n → ∞,

An,k →
∫
	

κ(x)(d−2)/d |∇h(x)|2 dx

2d
∫
	

κ(x)(d−2)/d dx
. (5.11)

As n gets larger, one expects the Gamma estimator of σ 2 to become more sensitive, thus one
expects to be able to estimate smaller values of σ 2. In the next result, we allow the common
variance of the Yi − h(Xi) to get smaller as n increases. More precisely, we modify (5.7) to

Yi,n = h(Xi) + n−1/dei, 1 ≤ i ≤ n. (5.12)

We consider an estimator for σ 2 in this model using a linear regression of just two points arising
from k = 1 and k = 2 (we could similarly consider any other two choices of k). Let the random
variable ρk denote the distance from the origin 0 to its kth nearest neighbour in the point set H1.
It is known (see [22], equation (19)) that

E[ρ2
k ] = ω

−2/d
d �

(
k + (2/d)

)
/�(k).

Theorem 5.3. Let γn,k be given by (5.8), with Yi = Yi,n given by (5.12). Then,

n2/d

(
γn,2Eρ2

1 − γn,1Eρ2
2

Eρ2
1 − Eρ2

2

)
L1−→σ 2. (5.13)
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This result shows that the left-hand side of (5.13) (which is the intercept in linear regression
of n2/dγn,k against Eρk , based on just two values of k) is a consistent estimator of σ 2.

In proving Theorems 5.2 and 5.3, we use the following notation. For locally finite X ⊂ R
d and

for x ∈ R
d , let Nk

X (x) be the kth nearest neighbour of x in the set X \ {x}, making the choice
according to an arbitrary rule in the event of ties and taking Nk

X (x) = x if X \ {x} has fewer than
k elements.

Lemma 5.2. Suppose b ∈ R
d and λ > 0. Then,

E[|b · Nk
Hλ

(0)|2] = d−1λ−2/d |b|2E[ρ2
k ]. (5.14)

Proof. Let � = (θ1, . . . , θd) be uniformly distributed over the unit sphere in R
d , independent

of ρk . Since
∑d

i=1 θ2
i = |�|2 = 1, taking expectations, we have E[θ2

i ] = 1/d for each i. Given b,
we have, for some unit vector e, that b = |b|e and hence

E[(b · �)2] = |b|2E[|e · �|2] = d−1|b|2, (5.15)

where the last equality follows because, by rotational symmetry, the distribution of |e ·�|2 is the
same for all unit vectors e and its expectation is 1/d whenever e is one of the unit coordinate
vectors.

By the distributional rotational symmetry of the homogeneous Poisson process and the fact
that Hλ has the same distribution as λ−1/dH1 for any λ > 0 (by the Mapping Theorem [12]), we

have Nk
Hλ

(0)
D=λ−1/dρk�. Taking expectations and using (5.15), we have (5.14). �

Proof of Theorem 5.2. Let ξ(x;X ) be a point mass at x of size (∇h(x) · (Nk
X − x))2 and

let 	λ = 	 for all λ. Then, for x ∈ 	, ξλ(x;X ) is a point mass at x of size λ2/d(∇h(x) ·
(Nk

X (x) − x))2. By assumption, |∇h| is bounded on 	, so there is a constant C such that, for
x ∈ 	, ∣∣∇h(x) · (Nk

X (x) − x
)∣∣2 ≤ C|Nk

X (x) − x|2
and hence, for x ∈ 	,

P [ξn(x;Xn−1,	) > t] ≤ P [|Nk
Xn−1

(x) − x|2 > t/(Cn2/d)].

By assumption, κ(Br(x))/rd is bounded away from zero on 0 < r < diam(	), so there are
constants C′,C′′ such that for x ∈ 	, n ≥ 2k and (t/(Cn2/d))1/2 ≤ diam(	),

P [ξn(x;Xn−1,	) > t] ≤
k−1∑
j=0

(
n − 1

j

)(
td/2

C′n

)j(
1−

(
td/2

C′n

))n−1−j

≤ exp(−td/2/C′′)

and this bound also holds for (t/(Cn2/d))1/2 > diam(	) since, in that case, the proba-
bility is zero. It follows that (2.5) holds here for any p. Therefore, we may apply The-
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orem 2.1, here taking f ≡ 1 and 	λ = 	 for all λ, followed by Lemma 5.2, to ob-
tain

n2/d
E

[(∇h(X1) · (Xj(i,n,k)

) − X1
)2] = E[ξn(X1;Xn,	)] = n−1

E[〈f, νn,n〉]

→
∫

	

E
[(∇h(x) · Nk

Hκ(x)
(0)

)2]
κ(x)dx

= d−1
E[ρ2

k ]
∫

	

κ(x)1−(2/d)|∇h(x)|2 dx. (5.16)

As for the denominator of the expression (5.10) for An,k , we have (see [6,18,22]) that

n2/d
E

[∣∣Xj(i,n,k) − X1
∣∣2] = n−1

E

n∑
j=1

(
n1/d

∣∣Xj(i,n,k) − Xi

∣∣)2

→
∫

	

(
κ(x)−2/d

E[ρ2
k ])κ(x)dx

and combining this with the limiting expression (5.16) for the numerator, we obtain (5.11). �

Proof of Theorem 5.3. We give just a sketch. We must now consider marked points. The mark
space is M = R and the real-valued mark T (x) attached to a point x ∈ R

d is assumed to have
the common distribution of e1, e2, . . . (with mean zero and variance σ 2). Given k and given
x = (x, T (x)) with x ∈X and X a finite subset of R

d ×M, we set

ξ(x;X ) = (∇h(x) · (Nk
X (x) − x

) + T (Nk
X (x)) − T (x)

)2
.

This can be shown to satisfy the conditions of Theorem 2.1. We set ei = T (Xi) and Xi = (Xi, ei)

and Xn = {X1, . . . ,Xn}. By first-order Taylor approximation,

n2/dγn,k ≈ n(2/d)−1

2

n∑
i=1

(∇h(Xi) · (Xj(i,n,k) − Xi

) + n−1/d
(
ej (i,n,k) − ei

))2

= 1

2n

n∑
i=1

(
n1/d

(∇h(Xi) · (Xj(i,n,k) − Xi

)) + (
ej (i,n,k) − ei

))2

= 1

2n

n∑
i=1

ξn(Xi,Xn) = 1

2n
〈f, νn,n〉,

where we put f ≡ 1. By Theorem 2.1, this converges in L1 to the limit

1

2

∫
	

E
[(∇h(x) · NHκ(x)

+ T
(
NHκ(x)

) − T (0)
)2]

κ(x)dx

= σ 2 + E[ρ2
k ]

2d

∫
	

|∇h(x)|2κ(x)1−(2/d) dx,



LLNs in stochastic geometry with applications 1149

where we have used Lemma 5.2 and the fact that the marks T have mean zero, variance σ 2 and
are independent of each other and of the point process Hκ(x).

It then follows that we have the L1 convergence

n2/d(γn,2Eρ2
1 − γn,1Eρ2

2) → (Eρ2
1 − Eρ2

2)σ 2

and this implies (5.13). �
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